The TOTEM Experiment

Jan Kašpar
on behalf of the TOTEM collaboration

Heidelberg Particle Physics Colloquium, 28 May, 2013
Outline

I) Physics programme
II) Detector apparatus
III) Analyses and results
IV) Upgrade plans
V) Summary
part I

Physics programme
TOTEM: forward hadronic phenomena at LHC

- LHC: \(\approx \frac{1}{3} \) of \(\sigma_{\text{tot}} \) flows more \textit{forward} than conventional experiments can detect.
- \textit{forward} \(\rightarrow \) \textit{low momentum transfer(s)} \(\rightarrow \) \textit{non-perturbative QCD} \(\rightarrow \) little explored/understood (\(\rightarrow \) interesting)
- \textit{diffractive processes} \(\Rightarrow \) non-suppressed \textit{rapidity gaps} \(\Leftarrow \) exchange of colourless objects.

\begin{align*}
\text{Non-diffractive} \\
\text{Colour exchange} \\
dN / d\Delta \eta = \exp(-\Delta \eta)
\end{align*}

\begin{align*}
\text{Diffractive} \\
\text{Colourless exchange with vacuum quantum numbers} \\
dN / d\Delta \eta = \text{const}
\end{align*}

\begin{center}
\textit{rapidity gap}
\end{center}

Incident hadrons retain their quantum numbers remaining colourless.
(Some) processes of interest

- **Elastic Scattering (ES),** ≈ 25 mb

- **Single Diffraction (SD),** ≈ 10 mb

- **Double Diffraction (DD),** ≈ 5 mb

- **Central Diffraction (CD),** ≈ 1 mb

\leftarrow double line in diagrams: exchange of “Pomeron” – a colourless object with vacuum quantum numbers

\[\downarrow\]

consequence: rapidity gap

in contrast:

- **Non-Diffractive process (ND)**
part II

DETECTOR APPARATUS
TOTEM shares IP with CMS ⇒ collaboration possible
TOTEM Detectors

- Telescopes T1 and T2 charged particles from inelastic collisions
 - T1: $3.1 < |\eta| < 4.7$
 - T2: $5.3 < |\eta| < 6.5$

- Roman Pots at the LHC elastic and diffractive protons

- All detectors symmetrically on both sides of IP5
- All detectors trigger-capable
- All detectors radiation tolerant
Telescope T1

- installed inside CMS end-caps
- at 7.5 to 10.5 m from the IP
- one *telescope* on each side of IP
- each telescope consists of two *quarters*

- each quarter formed by 5 *planes* equally spaced along beam
- each plane consists of 3 trapezoidal *CSC detectors*, each covering 60° in azimuth
- Cathode Strip Chamber: gaseous detector with 3 read-out coordinates (at 60° wrt. each other)
Telescope T2

- installed inside CMS shielding between HF and Castor calorimeters
- centred about 13.5 m from the IP
- one telescope on each side of IP
- each telescope consists of two quarters

- each quarter formed by 10 semi-circular planes, assembled in 5 back-to-back mounted pairs
- each plane equipped with a Gas Electron Multiplier detector
 - gaseous detector, electron multiplication by 3 perforated foils (2 mm separation)
 - radial segmentation: strips (resolution \(\approx 0.15 \) mm)
 - coarse radial \(\times \) azimuthal segmentation: pads (for triggering, azimuthal resolution 0.8 \(^\circ\))
Roman Pots

- **stations** installed at ±220 m in the outgoing LHC beam-pipe
- each station has two **units**, separated by ≈ 5 m

- each unit contains 3 **Roman Pots**: top, bottom and horizontal
- Roman Pot = movable beam-pipe insertion
 - *beam unstable* ⇒ RPs retracted to safe position
 - *beam stable* ⇒ RPs as close to beam as reasonable
- typical approach: 10 \(\sigma_{\text{beam}} \) (record 3 \(\sigma_{\text{beam}} \))

- Roman Pot: container for sensors
• each RP contains a *package* of 10 silicon sensors
• 5 pairs of back-to-back mounted strip sensors

• custom developed *“edgeless” sensors*
 ⇒ *insensitive edge* \(\approx 50 \, \mu \text{m} \) (standard about 1 mm)
• single-sided p\(^+\)-n
• 512 strips at pitch of 66 \(\mu\)m, at 45 ° wrt. cut edge
• operated at \(\approx -20 \, ^\circ \text{C} \), bias voltage \(\approx 100 \, \text{V} \)
Proton measurement with Roman Pots

- LHC lattice between IP5 and RPs at 220 m

- **proton transport**: described as in linear optics

\[
\begin{pmatrix}
 x \\
 \theta_x \\
 y \\
 \theta_y \\
 \zeta
\end{pmatrix}
_{\text{RP}}
= \begin{pmatrix}
 v_x & L_x & \cdot & \cdot & D_x \\
 \cdot & \cdot & \cdot & \cdot & \cdot \\
 v_y & L_y & \cdot & \cdot & D_y \\
 \cdot & \cdot & \cdot & \cdot & \cdot \\
 \cdot & \cdot & \cdot & 1
\end{pmatrix}
_{\text{effective length } L}

\begin{pmatrix}
 x^* \\
 \theta_x^* \\
 y^* \\
 \theta_y^* \\
 \zeta
\end{pmatrix}
_{\text{IP}}
\]

optical functions:
- effective length \(L \)
- magnification \(v \)
- dispersion \(D \)

\(\zeta = \Delta p/p: \) momentum loss

- **proton reconstruction**: inverted transport RPs \(\rightarrow \) IP
 - optical parameters functions of \(\zeta \Rightarrow \) reconstruction is non-linear problem
 - good knowledge of optics is crucial
LHC optics

- optics defines *what* and *how* can be observed – a CD sample seen with 2 different optics

\[\beta^* = 90 \text{ m} \]

\[
\begin{align*}
L_x & \approx 0, & L_y & \approx 260 \text{ m}, & D_x & \approx 4 \text{ cm} \\
\text{diffractive protons in vertical RPs}
\end{align*}
\]

\[
\begin{align*}
L_x & \approx 1.7 \text{ m}, & L_y & \approx 14 \text{ m}, & D_x & \approx 8 \text{ cm} \\
\text{diffractive protons in horizontal RPs}
\end{align*}
\]

- optics carefully optimised for TOTEM special runs

- optics typically “labelled” by \(\beta^* \equiv \text{betatron function at IP} \)
 - beam width: \(\sqrt{\epsilon \beta} \)
 - beam angular divergence: \(\sqrt{\epsilon / \beta} \) (\(\epsilon \): a measure of beam size/divergence)
 - luminosity \(\propto (\text{beam width at IP})^{-2} \propto 1/\beta^* \)
 - example: high \(\beta^* \) ⇒ reduced luminosity but protons “more parallel”
Run scenarios

\((t \approx -p^2 \vartheta^2): \text{four-momentum transfer squared; } \xi = \Delta p/p: \text{fractional momentum loss}\)

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

low **\(\beta^*\)**
- **\(\beta^* = 0.5 \text{ to } 3 \text{ m}\)**
- **\(\mathcal{L} \approx 10^{30} \text{ cm}^{-2}\text{s}^{-1}\)**
- Elastic data available
- \(0.4 \lesssim |t/\text{GeV}^2| \lesssim 3.5\)
- Resolution
 - \(\sigma(\vartheta^*) \approx 15 \mu\text{rad}\)
 - \(\sigma(\xi) \approx 0.2\%\)

- **diffraction, high \(|t|\) elastic scattering, low cross-section processes**

medium **\(\beta^*\)**
- **\(\beta^* = 90 \text{ m}\)**
- **\(\mathcal{L} \approx 10^{28} \text{ cm}^{-2}\text{s}^{-1}\)**
- Elastic data available
- \(10^{-2} < |t/\text{GeV}^2| \lesssim 1.3\)
- Resolution
 - \(\sigma(\vartheta^*) \approx 1.7 \mu\text{rad}\)
 - \(\sigma(\xi) \approx 0.4 \text{ to } 0.6\%\)

- **diffraction, mid \(|t|\) elastic scattering, total cross section**

high **\(\beta^*\)**
- **\(\beta^* \gtrsim 1000 \text{ m}\)**
- **\(\mathcal{L} \approx 10^{27} \text{ cm}^{-2}\text{s}^{-1}\)**
- Elastic data available
- \(6 \cdot 10^{-4} < |t/\text{GeV}^2| < 0.3\)
- Resolution
 - \(\sigma(\vartheta^*) \approx 0.4 \mu\text{rad}\)

- **total cross section, low \(|t|\) elastic scattering**

- **all \(\xi\) seen, universal optics**

- **all \(\xi\) seen**
Optics imperfections

good optics knowledge essential for reconstruction

- optics imperfection sources
 - power-converter error: $\Delta I/I \approx 10^{-4}$
 - magnet transfer function: $\Delta B/B \approx 10^{-3}$
 - magnet rotation (± 1 mrad) and displacements (< 0.5 mm)
 - magnet harmonics ($\Delta B \approx 10^{-4}$)
 - beam momentum offset: $\Delta p/p \approx 10^{-3}$
 - beam crossing-angle uncertainty

- optics determination
 - direct measurement – difficult
 - indirect from TOTEM observables

- TOTEM optics determination – variation of magnet/beam parameters (within tolerances) to match TOTEM observables:
 - L_y^L / L_y^R
 - $dL_y / ds / L_y$
 - $s(L_x = 0)$
 - xy coupling (tilts in xy plane)
 - ...
Optics refinement with TOTEM data

example for $\beta^* = 3.5\, m$ optics

- optics uncertainty reduced:
 - x projection: from 1.6% to 0.17%
 - y projection: from 4.2% to 0.16%

[H. Niewiadomski, Roman Pots for beam diagnostic, OMCM, CERN, 20-23.06.2011]
[H. Niewiadomski, F. Nemes, LHC Optics Determination with Proton Tracks, IPAC’12, Louisiana, USA, 20-25.05.2012]
Alignment of Roman Pots

- RPs = movable insertions ⇒ each run at different positions
- required angular precision micro-radians ⇒ micro-metre alignment precision needed

- two types of alignment needed
 - alignment of mechanical RP edges → for machine protection
 - alignment of RP sensors → for physics
- need alignment *wrt. the beam*

↓

3-step alignment procedure

1) *Collimation alignment*: RP alignment *wrt. the beam*, rough sensor alignment

- standard procedure for LHC collimators
2) **Track-based alignment**: relative alignment among sensors
 - RP station: no magnetic field → straight tracks
 - misalignments → residuals
 - residual analysis → alignment corrections
 - overlap between horizontal and vertical RPs → relative alignment among all sensors
 - singular/weak modes: e.g. overall shift/rotation
 ⇒ need further alignment step

3) **Alignment with physics processes (elastic scattering)**: sensor alignment wrt. beam
part III

Analyses and results
Elastic scattering

\[p \rightarrow \text{RP} \]

- interesting process on its own
- two anti-collinear protons ⇒ excellent tool for
 - alignment
 - understanding detector effects
 - optics tuning, etc.

- \(\theta \): scattering angle
- \(\phi \): azimuthal angle
- \(t \): four-momentum transfer squared
 \[t \approx -p^2\theta^2 \]
Elastic scattering

Pre-TOTEM status

- theoretical/phenomenological models: very different predictions at larger $|t|$

- different $|t|$ regions: different scattering mechanisms/QCD regimes
Elastic scattering Analysis

entirely data-driven

1. Kinematics reconstruction
 - tracks in RPs \(\rightarrow \) kinematics at IP (\(\xi = 0 \) \(\Rightarrow \relatively easy \))
 - choice of formulae \(\rightarrow \) minimisation of systematics

2. Elastic tagging
 - angles left = angles right, vertex left = vertex right
 - protons \(\xi \approx 0 \) \(\Rightarrow \) correlation hit position vs. track angle at RPs

3. Background subtraction

4. Acceptance corrections
 - RP sensors have finite size, LHC apertures
 - azimuthal symmetry \(\Rightarrow \) geometrical correction (+ smearing around edges)

5. Unfolding of resolution effects
 - angular resolution: left-right proton comparison
 - Monte Carlo calculation \(\Rightarrow \) impact on \(t \)-distribution

6. Inefficiency corrections
 - 3-out-of-4 efficiency
 - near-far correlated RP inefficiencies
 - “pile-up” = elastic event + another track in a RP

7. Luminosity
 - from CMS (if available), uncertainty \(\approx 4\% \)
 - from TOTEM (details later on)
Elastic scattering

Results

building a puzzle from measurements with different β^*

$\sqrt{s} = 7$ TeV

$\sqrt{s} = 8$ TeV

Elastic scattering

First conclusions

- no theoretical/phenomenological model describes completely TOTEM data
- at low $|t|$: nearly exponential decrease
 \[\frac{d\sigma}{dt} \approx e^{-B|t|} \]

- previously observed trends confirmed: as \sqrt{s} grows
 - “forward peak” shrinks
 ⇒ minimum moves to lower values
 - intercept at $t = 0$ increases
 ⇒ related to σ_{tot} increase
 - forward slope B increases
Elastic scattering

Very low $|t|$: Coulomb-hadronic interference

- $|t|$ as low as $6 \cdot 10^{-4}$ GeV2 (i.e. $\vartheta \approx 6$ μrad) accessible thanks to
 - $\beta^* = 1000$ m optics: large effective lengths, low beam divergence (≈ 0.5 μrad)
 - RPs approach of $3 \sigma_{\text{beam}}$ from beam

![Graph showing data fit at $\sqrt{s} = 8$ TeV with Coulomb, hadronic, and combined interference]

- interesting aspects
 - Coulomb-hadronic interference \Rightarrow determination of phase of hadronic amplitude
 - Coulomb/hadronic separation \Rightarrow hadronic extrapolation to $t = 0$
 \Rightarrow total-cross section implications via optical theorem

\[\sigma_{\text{tot}} \propto \Im A_{\text{el}}(t = 0) \]
Elastic scattering

Hadronic phase: first results

Theory

\[\frac{d\sigma}{dt} \propto |A^{C+H}|^2 \]

\[A^{C+H} = \text{COMBINATION}(A^C, A^H) \]

- **COMBINATION**: 2 theoretical alternatives
- \(A^C \): well known
- \(A^H \)
 - *modulus*: constrained by TOTEM data \(\Rightarrow \) parametrised \(\exp(Bt + \ldots) \)
 - *phase*: test a range of theoretical predictions

Fits

- various fit metrics: generalised \(\chi^2 \), Kolmogorov-like
- combination of above choices: little impact on the fit
- very PRELIMINARY result

\[\varrho = \left. \frac{\Re A^H}{\Im A^H} \right|_{t=0} = 0.110 \pm 0.027^{(\text{stat})} \pm 0.010^{(\text{syst})} + 0.013^{(\text{model})} - 0.012 \]
Total cross-section
Total cross-section
Pre-TOTEM status

Various σ_{tot} fits by COMPETE

- Various models/theories:
 \[
 \sigma_{\text{tot}} \sim \ln s, \quad \sigma_{\text{tot}} \sim \ln^2 s, \quad \sigma_{\text{tot}} \sim s^{\alpha-1}
 \]

- Predictions for $\sqrt{s} = 14$ TeV
 \[
 90 \text{ mb} < \sigma_{\text{tot}} < 130 \text{ mb} \Rightarrow 40 \% \text{ uncertainty}
 \]

- Available data not decisive (incompatible Tevatron measurements)
Total cross-section

Methods

- consequence of optical theorem

\[
\sigma_{tot}^2 \propto [\Im A_{el}(t = 0)]^2 = \frac{1}{1 + \varrho^2} |A_{el}(t = 0)|^2 \propto \frac{1}{1 + \varrho^2} \frac{d\sigma_{el}}{dt} \bigg|_{t=0}
\]

- 3 methods available

elastic observables only:

\[
\sigma_{tot}^2 = \frac{16\pi}{1 + \varrho^2} \frac{1}{\mathcal{L}} \frac{dN_{el}}{dt} \bigg|_{0}
\]

\(\varrho\)-independent:

\[
\sigma_{tot} = \frac{1}{\mathcal{L}} (N_{el} + N_{inel})
\]

luminosity-independent:

\[
\sigma_{tot} = \frac{16\pi}{1 + \varrho^2} \frac{dN_{el}/dt|_{0}}{N_{el} + N_{inel}}
\]

- \(\varrho\) value from TOTEM or from an external source, e.g. COMPETE
 - enters as \(1 + \varrho^2\) \(\Rightarrow\) limited impact

- by-product: by method combination luminosity \(\mathcal{L}\) can be determined
• T2 sees $\approx 95\%$ of inelastic events (enough to detect 1 track!)

1) **Raw rate**: event counting with T2
 \[\downarrow \text{experimental corrections}: \text{trigger and reconstruction inefficiencies, beam-gas event suppression, pile-up consideration} \]

2) **Visible rate**: visible with T2 in perfect conditions
 \[\downarrow \text{recovery of events with no tracks in T2}: \text{T1-only events, events with gap over T2, low-mass diffraction} \]

3) **Physics rate**: true rate of inelastic events

• only one major Monte-Carlo-based correction: *low-mass diffraction*
 \[\Rightarrow \text{but can be constrained from data} \]
Total cross-section

Results

<table>
<thead>
<tr>
<th>$\sqrt{s} = 7$ TeV</th>
<th>$\sqrt{s} = 8$ TeV</th>
</tr>
</thead>
</table>

elastic observables only:

\[
\sigma_{tot}^2 = \frac{16\pi}{1 + \varrho^2} \frac{1}{L} \frac{dN_{el}}{dt} \bigg|_0
\]

\[
\sigma_{tot} = (98.6 \pm 2.3) \text{ mb}
\]

- **ϱ-independent:** \[\sigma_{tot} = \frac{1}{L} (N_{el} + N_{inel})\]

\[
\sigma_{tot} = (99.1 \pm 4.4) \text{ mb}
\]

- **luminosity-independent:** \[\sigma_{tot} = \frac{16\pi}{1 + \varrho^2} \frac{1}{N_{el} + N_{inel}} \frac{dN_{el}}{dt} \bigg|_0\]

\[
\sigma_{tot} = (98.1 \pm 2.4) \text{ mb}
\]

- **low mass diffraction**

\[
\sigma_{inel}^{|\eta| > 6.5} = \sigma_{tot}^{EOO} - \sigma_{el}^{EOO} - \sigma_{inel}^{\text{visible}} = (2.6 \pm 2.2) \text{ mb}
\]

(greyed: CMS luminosity unavailable)
Total cross-section

Results in context

![Graph showing total cross-section results](image)

- \(\sigma_{\text{tot}} \), \(\sigma_{\text{inel}} \), and \(\sigma_{\text{el}} \) (mb)
- \(\sqrt{s} \) (GeV)

Measurements at \(\sqrt{s} = 7 \text{ TeV} \)

- \(\sigma_{\text{tot}} \)
- \(\sigma_{\text{inel}} \)
- \(\sigma_{\text{el}} \)

- ALICE
- ATLAS
- CMS

- Auger + Glauber
- TOTEM (\(L \)-independent)

- best COMPETE \(\sigma_{\text{tot}} \) fits

- \(11.4 - 1.52 \ln s + 0.130 \ln^2 s \)

Data available here
Intermezzo: Optics for diffractive studies

\[x_{\text{RP}} = v_x x^* + L_x \theta_x^* + \xi D_x, \quad \xi = \Delta p/p_0 \]

\[\beta^* = 90 \text{ m} \]

- optical functions at RP 220:
 - \(L_x \approx 0 \), \(L_y \approx 260 \text{ m} \), \(D_x \approx 4 \text{ cm} \)
 - diffractive protons in **vertical RPs**
 (a CD sample)

- \(|\xi|_{\text{min}} = 0\% \Rightarrow \text{low masses}\)
- \(\xi\)-resolution
 - RPs only: (0.4 to 1)\% (\(t\)-dependent)
 - with CMS vertex: \(\approx 2 \times\) better

- \(\beta^*\) (0.7 m here)

- optical functions at RP 220:
 - \(L_x \approx 1.7 \text{ m} \), \(L_y \approx 14 \text{ m} \), \(D_x \approx 8 \text{ cm} \)
 - diffractive protons in **horizontal RPs**
 (a CD sample)

- \(|\xi|_{\text{min}} = 2.8\% \Rightarrow \text{higher masses}\)
- \(\xi\)-resolution
 - RPs only: \(\approx 0.2\%\)

 used so far

 planned after long shutdown
Single diffraction

- kinematics: $\zeta \approx e^{-\Delta \eta}$
 - double “determination” of ζ
 - from proton (Roman Pots)
 - from rapidity gap (T1/2)

- mass of diffractive system X
 $m_X \approx \sqrt{s\zeta}$

- minimal mass visible (T2 acceptance):
 $m_X \geq 3.4$ GeV
Single diffraction

Topologies / diffractive-mass classes

- **T2 opposite arm**: $m_X \approx 3.4$ to 7 GeV, $2 \cdot 10^{-7} < \zeta < 1 \cdot 10^{-6}$

- **T1 opposite arm**: $m_X \approx 7$ to 350 GeV, $1 \cdot 10^{-6} < \zeta < 2.5 \cdot 10^{-3}$

- **T1 same arm**: $m_X \approx 350$ to 1100 GeV, $2.5 \cdot 10^{-3} < \zeta < 2.5 \cdot 10^{-2}$

- **T2 same arm**: $m_X \gtrsim 1100$ GeV, $\zeta > 2.5 \cdot 10^{-2}$
Single diffraction

Analysis I

- available data: $\sqrt{s} = 7$ and 8 TeV, $\beta^* = 90$ m (proton in vertical RPs)
 - 7 TeV analysis used here for illustration
 - 8 TeV data: also CMS data available
- trigger: RP & T2
- four RP combinations (left/right × top/bottom) ⇒ each analysed separately ⇒ confidence
- background – pile-up:
 - beam halo (RP) + inelastic (T1/2) or SD/DPE (RP) + inelastic (T1/2)
 ⇒ proton and inelastic products independent
 ⇒ background estimation: events with proton on the “wrong” side

- complicated for class T2 same arm
Single diffraction

Analysis II

- **corrections**
 - *RP proton acceptance*

- **grey regions = sensors → protons detected**

- **L_x (ellipse width) strongly dependent on ξ**

- **L_y (ellipse width) weakly dependent on ξ**

- **ellipse centre moves right with $|\xi|$ (dispersion D_x)**

- **efficiencies (trigger, reconstruction, ...)**

- **smearing in t and ξ (yet to be applied)**

- **experimental ξ resolution from RPs**

 - **class: T2 opposite arm**
 \[2 \cdot 10^{-7} < \xi < 1 \cdot 10^{-6} \]

 - **plotted ξ from RP reconstruction**

 - **Gaussian fit: $\sigma(\xi) = 0.008$**
Single diffraction
First results

• $|t|$-distributions (unfolding not yet applied) fitted with $\frac{d\sigma}{dt} = Ce^{-Bt}$

• cross-section per class, including the invisible low-$|t|$ contribution (exploiting the fit above)

<table>
<thead>
<tr>
<th>Topology</th>
<th>Mass Range</th>
<th>Slope B</th>
<th>Extrapolated Cross-section</th>
</tr>
</thead>
<tbody>
<tr>
<td>T2 Opposite</td>
<td>3.4 to 7 GeV</td>
<td>10.1 GeV$^{-2}$</td>
<td>1.8 mb</td>
</tr>
<tr>
<td>T1 Opposite</td>
<td>7 to 350 GeV</td>
<td>8.5 GeV$^{-2}$</td>
<td>3.3 mb</td>
</tr>
<tr>
<td>T1 Same</td>
<td>350 to 1100 GeV</td>
<td>6.8 GeV$^{-2}$</td>
<td>1.4 mb</td>
</tr>
<tr>
<td>T2 Same</td>
<td>above 1100 GeV</td>
<td></td>
<td>effort ongoing ...</td>
</tr>
</tbody>
</table>

– already for both proton sides
– PRELIMINARY

• very preliminary

$\sigma_{SD}(3.4 < m_X < 1100 \text{ GeV}) = (6.5 \pm 1.3) \text{ mb}$, \hspace{1cm} $\sigma_{SD}(m_X < 3.4 \text{ GeV}) = \mathcal{O}(2.5 \text{ mb})$

• final goal: ξ and t double-differential distribution
Double diffraction

\[p \rightarrow X \rightarrow T_1/T_2 \]

\[p \rightarrow X \rightarrow T_1/T_2 \]
Double diffraction

Method

- Method

\[\sigma_{DD} = \frac{(\text{experimental corrections}) \cdot (\text{raw data}) - (\text{background})}{L} \]

- Experimental challenge: background (non-diffractive, SD pile-up)

 \begin{align*}
 \text{non-diffractive background} & \quad \text{based on control sample } 2 \times T2 + 2 \times T1 \\
 & \quad \text{transferred to } 2 \times T2 + 0 \times T1 \text{ using Monte-Carlo} \\
 \text{SD background} & \quad \text{based on control sample } 1 \times T2 + 0 \times T1 \\
 & \quad \text{transferred to } 2 \times T2 + 0 \times T1 \text{ using the measured SD distributions} \\
 \text{outputs} & \quad \text{integral visible cross-section} \\
 & \quad \text{cross-section as function of } \eta_{\text{min}} \text{ on both sides } \Rightarrow \text{ challenge:} \\
 & \quad \text{reconstructed } \eta_{\text{min}} \rightarrow \text{true/generator } \eta_{\text{min}} \quad \text{(bin migration } \Rightarrow \text{ limited number of bins)}
 \end{align*}

sub-sample with signal \(\gg \) background \(\Rightarrow 2 \times T2 \) and T1 veto
Double diffraction

Results

7 TeV results

• measurement

\[\sigma_{DD}(4.7 < |\eta_{\text{min}}| < 6.5) = 120 \pm 25 \mu b \]

<table>
<thead>
<tr>
<th></th>
<th>-4.7 < \eta_{\text{min}} < -5.9</th>
<th>-5.9 < \eta_{\text{min}} < -6.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.7 < \eta_{\text{min}} < 5.9</td>
<td>66 \pm 19 \mu b</td>
<td>27 \pm 4 \mu b</td>
</tr>
<tr>
<td>5.9 < \eta_{\text{min}} < 6.5</td>
<td>28 \pm 5 \mu b</td>
<td>12 \pm 4 \mu b</td>
</tr>
</tbody>
</table>

(T1: 3.1 < \eta < 4.7, T2: 5.3 < \eta < 6.5)

• comparison to Monte Carlos

\[\sigma_{DD}(4.7 < |\eta_{\text{min}}| < 6.5) = 159 \mu b \]

<table>
<thead>
<tr>
<th></th>
<th>-4.7 < \eta_{\text{min}} < -5.9</th>
<th>-5.9 < \eta_{\text{min}} < -6.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.7 < \eta_{\text{min}} < 5.9</td>
<td>70 \mu b</td>
<td>37 \mu b</td>
</tr>
<tr>
<td>5.9 < \eta_{\text{min}} < 6.5</td>
<td>35 \mu b</td>
<td>17 \mu b</td>
</tr>
</tbody>
</table>

\[\sigma_{DD}(4.7 < |\eta_{\text{min}}| < 6.5) = 101 \mu b \]

<table>
<thead>
<tr>
<th></th>
<th>-4.7 < \eta_{\text{min}} < -5.9</th>
<th>-5.9 < \eta_{\text{min}} < -6.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.7 < \eta_{\text{min}} < 5.9</td>
<td>44 \mu b</td>
<td>23 \mu b</td>
</tr>
<tr>
<td>5.9 < \eta_{\text{min}} < 6.5</td>
<td>23 \mu b</td>
<td>12 \mu b</td>
</tr>
</tbody>
</table>

8 TeV results

• similar analysis to be repeated
• improvement expected: data from CMS available
Central diffraction – TOTEM alone

- both protons detected (unprecedented)
- mass of diffractive system X
 $$m_X \approx \sqrt{s \xi_1 \xi_2}$$
Central diffraction – TOTEM alone

First results

- available data: $\sqrt{s} = 7$ TeV, $\beta^* = 90$ m
 \Rightarrow almost complete ξ acceptance, but resolution sufficient only $\xi \gtrsim 0.03$
- trigger/event selection: $2 \times$ RP
- background: ES + inelastic, beam halo + inelastic
 - ES: anti-elastic cuts or use forbidden topologies only (top-top, bottom-bottom)
 - beam-halo: cut $|y| > 11 \sigma_{\text{beam}} \Rightarrow$ halo negligible
- $|t_y|$ distribution: all ξ values, only acceptance correction
- estimate of σ_{CD}

$$\frac{d^2 \sigma_{\text{CD}}}{dt_1 dt_2} = Ce^{-Bt_1} e^{-Bt_2}$$

$$\sigma_{\text{CD}} = \int_{-\infty}^{0} dt_1 \int_{-\infty}^{0} dt_2 Ce^{-Bt_1} e^{-Bt_2} \approx 1 \text{ mb}$$

- final goal: $\frac{d^4 \sigma_{\text{CD}}}{dt_1 dt_2 d\xi_1 d\xi_2}$

![Graph showing data and MC comparison with fitted function and LHC aperture limit.](image)
Central diffraction – TOTEM + CMS

- both protons detected (unprecedented)
- mass of diffractive system X – double determination (unprecedented)
 - by TOTEM RPs
 - by CMS

\[m_X \approx \sqrt{s \xi_1 \xi_2} \]
Central diffraction – TOTEM + CMS

Combined TOTEM+CMS analyses

- TOTEM and CMS independent experiments – common runs need:
 - exchange of triggers (TOTEM developed a faster electrical trigger)
 - offline data merging (based on BunchCrossing and Orbit counters)

- TOTEM + CMS = unprecedented rapidity coverage
 - CMS tracker: $|\eta| < 2.5$
 - CMS calorimeters: $|\eta| < 5.5$
 - TOTEM-T1: $3.1 < |\eta| < 4.7$
 - TOTEM-T2: $5.3 < |\eta| < 6.5$
 - CMS-FSC: $6 < |\eta| < 8$

- data available: $\sqrt{s} = 8$ TeV, $\beta^* = 90$ m

- two direction of studies
 - soft CD: inclusive X
 ⇒ analysis as with TOTEM alone
 - hard CD: $X = \text{jets} + \ldots$
 ⇒ interesting interplay between soft/non-perturbative and hard/perturbative QCD effects
Central diffraction – TOTEM + CMS

Hard CD

- low cross-section processes
 - background critical (typically pile-up)
 - more data needed
 ⇒ 90 m optics with more bunches or low-β^* optics

- pile-up removal:
 - 0 or 1 vertex in CMS
 - RP near edge area removed (1 elastic proton + beam halo or SD)
 - $\xi > 1.5 \%$ (far enough from resolution effects)
 - RP ξ predict event topology in central detectors
 - FSC empty: QCD background protection
 - $M_X^{CMS} < M_X^{TOTEM RPs}$
Forward charged-particle multiplicities

- $dN_{\text{ch}}/d\eta$: mean number of charged particles per event and per unit of pseudorapidity
- probes (non-)perturbative strong interactions and hadronisation
- primary particles only: primary = lifetime > 30 ps (definition consistent with other LHC experiments)
- T1 and T2 extend η range to forward directions
 - T1 analyses yet in early phase
- measurement based on T2 only
 - still $\approx 95\%$ of inelastic events seen
 - almost all non-diffractive events visible
 - almost all diffraction with $m_X \gtrsim 3.4$ GeV detected
Forward charged-particle multiplicities

Method

\[
\frac{\Delta N_{ch}}{\Delta \eta} \bigg|_{\eta=\eta_0} = \frac{1}{N_{ev}} \sum_{\text{events}} \sum_{\text{tracks in bin } \eta_0} \frac{\text{corrections}}{\Delta \eta}
\]

\[
\text{corrections} = \frac{W(\eta_0, z_{\text{impact}})}{\varepsilon(\eta_0, m)} \sum_j B_j(\eta_0) G(\eta_0) S_p(\eta_0) \frac{2\pi}{\Phi} H P
\]

- \(W(\eta_0, z_{\text{impact}})\): probability of a track to be primary
- \(\varepsilon(\eta_0, m)\): primary-track efficiency, function of pad multiplicity \(m\); value: 0.7 to 0.9
- \(B_j(\eta_0)\): bin migration (MC based)
- \(G(\eta_0)\): primary particles not reaching T2 (MC based); value \(\approx 1.05\)
- \(S_p(\eta_0)\): impurity of primary selection, mainly due to \(K_S^0\) and \(\pi^0 \rightarrow \gamma\)'s; MC based; value 0.8 to 0.9
- \(2\pi/\Phi\): geometrical acceptance of 1 quarter; analyses performed per quarter \(\Rightarrow\) confidence
- \(H\): correction for large-shower events discarded in the analysis (MC based); value \(\approx 1.08\)
- \(P\): pile-up correction (estimated from zero-bias data stream); value \(\approx 1.03\)
Forward charged-particle multiplicities

7 TeV Results

main contributions to systematic uncertainty (≈ 10 %)
– subtraction of a large fraction of secondaries (about 80 % of all T2 tracks)
– track efficiency and misalignment uncertainties

gap LHCb – TOTEM T2 will be filled
– analysis of T1 data in progress
– data with shifted IP by 11 m ⇒ shift of T2 acceptance: 6.0 < \eta < 7.3 or 3.8 < \eta < 4.8
Forward charged-particle multiplicities

8 TeV: combined analysis TOTEM + CMS

- combined TOTEM + CMS analysis
 - the same T2-triggered data sample
 - unified track selection

- number of improvements wrt. 7 TeV analysis
 - improved simulation of T2 detector response
 - vertex information from CMS reduces pile-up correction
 - MC better tuned to reproduce LHC data

PRELIMINARY RESULT:
corrections and correlated systematics between CMS and TOTEM under study
• TOTEM stand-alone analysis performed also for different event classes:
 – inclusive: as before
 – non-single-diffractive enhanced: requiring both hemispheres of T2 on
 – single-diffractive enhanced: requiring only one hemisphere of T2 on

• in future: also correlations left/centre/right
Upgrade plans

- now: LHC in Long Shutdown 1
 - restart 2015: $\sqrt{s} = 14$ TeV, possibly even higher luminosities
 \Rightarrow higher pile-up

- TOTEM: interest in lower-cross-section processes \Rightarrow higher luminosity needed
 \Rightarrow higher pile-up

Two aspects of coping with pile-up

- *RP detectors resolve multiple tracks*
 - two new units will be installed – hosting pixel or rotated-strip detectors

- *association of RP and central detector (CMS) tracks* \Rightarrow tracks with common vertex
 - current RPs: with certain optics, transverse vertex component(s) determinable \Rightarrow insufficient
 - two new units with timing detectors, resolution $\lesssim 30$ ps
Summary

Number of results published
- elastic differential cross-section ($\sqrt{s} = 7$ TeV)
- total, elastic and inelastic cross-section ($\sqrt{s} = 7$ and 8 TeV)
- forward charged-particle pseudorapidity density ($\sqrt{s} = 7$ TeV)

Number of analyses in progress, some of them combined with CMS
- double diffraction ($\sqrt{s} = 7$ and 8 TeV)
- low-|t| elastic cross-section and Coulomb-interference ($\sqrt{s} = 8$ TeV)
- elastic differential cross-section ($\sqrt{s} = 8$ TeV)
- forward charged-particle pseudorapidity density ($\sqrt{s} = 8$ TeV), with CMS
- single diffraction ($\sqrt{s} = 7$ and 8 TeV)
- central diffraction, soft and hard ($\sqrt{s} = 7$ and 8 TeV), some with CMS

More data available
- p + p data at $\sqrt{s} = 2.76$ TeV
- p + A data

Roman Pot upgrade ongoing
- preparation for higher luminosities (higher pile-up)